217 research outputs found

    Transformation of the mechanisms of economic activity in the conditions of structural changes in the economy

    Get PDF
    The tendency of GDP decline was noted even under favorable conditions in the energy resources market, which isexplained by structural macroeconomic problems. Network, market and hierarchical structures are considered, theircomparative characteristics are carried out. The advantages and limitations of network forms of economic organizationare revealed. Data on the dissemination of information and communication technologies as a basis for the developmentof network mechanisms of economic activity are given. It is concluded that it is necessary to synthesize all three typesof structures for the implementation of an effective industrial maneuver in the structural policy of the state

    Towards a more mechanistic understanding of traits and range sizes

    Get PDF
    ABSTRACT Aim An important, unresolved question in macroecology is to understand the immense inter-specific variation in geographic range sizes. While species traits such as fecundity or body size are thought to affect range sizes, a general understanding on how multiple traits jointly influence them is missing. Here, we test the influence of a multitude of species traits on global range sizes of European passerine birds in order to better understand possible mechanisms behind macroecological relationships. Location Global. Methods We evaluated the effect of life-history traits (fecundity, dispersal ability), ecological traits (habitat niche, diet niche, migratory behaviour, migratory flexibility) and a morphological trait (body size) on the global range sizes of 165 European passerines. We identified hypotheses from the literature relating traits to range size and used path analysis to test them. Results Fecundity, dispersal ability and habitat niche breadth had a direct positive effect on range size. Diet niche position had a direct negative effect on range size. Habitat niche breadth also had an indirect positive effect via higher fecundity. Migratory behaviour had an indirect positive effect via better dispersal ability. Body size had a strong positive direct effect which was reduced by negative indirect effects via several other traits. Main conclusions Geographic range sizes of European passerines were influenced by life-history traits (fecundity and dispersal ability), ecological traits (habitat niche breadth, diet niche position and migratory behaviour) and by body size. Traits influenced range size both directly and indirectly. Body size effects were particularly complex, with positive and negative effects acting over different pathways. We show that it is necessary to disentangle the direct and indirect influence of multiple traits on range size to better elucidate the mechanisms that generate macroecological relationships

    Oases in the Sahara Desert–Linking biological and cultural diversity

    Get PDF
    The diversity of life sensu lato comprises both biological and cultural diversity, described as “biocultural diversity.” Similar to plant and animal species, cultures and languages are threatened by extinction. Since drylands are pivotal systems for nature and people alike, we use oases in the Sahara Desert as model systems for examining spatial patterns and trends of biocultural diversity. We identify both the underlying drivers of biodiversity and the potential proxies that are fundamental for understanding reciprocal linkages between biological and cultural diversity in oases. Using oases in Algeria as an example we test current indices describing and quantifying biocultural diversity and identify their limitations. Finally, we discuss follow-up research questions to better understand the underlying mechanisms that control the coupling and decoupling of biological and cultural diversity in oases

    Twenty-million-year relationship between mammalian diversity and primary productivity

    Get PDF
    At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity–productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity–productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23–1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity–productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction

    When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models

    Get PDF
    Many decision-makers are looking to science to clarify how nature supports human well-being. Scientists\u27 responses have typically focused on empirical models of the provision of ecosystem services (ES) and resulting decision-support tools. Although such tools have captured some of the complexities of ES, they can be difficult to adapt to new situations. Globally useful tools that predict the provision of multiple ES under different decision scenarios have proven challenging to develop. Questions from decision-makers and limitations of existing decision-support tools indicate three crucial research frontiers for incorporating cutting-edge ES science into decision-support tools: (1) understanding the complex dynamics of ES in space and time, (2) linking ES provision to human well-being, and (3) determining the potential for technology to substitute for or enhance ES. We explore these frontiers in-depth, explaining why each is important and how existing knowledge at their cutting edges can be incorporated to improve ES decision-making tools

    Attitudes towards returning wolves (Canis lupus) in Germany: Exposure, information sources and trust matter

    Get PDF
    Understanding how exposure and information affect public attitudes towards returning large carnivores in Europe is critical for human-carnivore coexistence, especially for developing efficient and de-escalating communication strategies. The ongoing recolonization of wolves (Canis lupus) in Germany provides a unique opportunity to test the role of different information sources and trust on people's attitudes towards wolves. We conducted a phone survey (n = 1250) and compared country-wide attitudes towards wolves with attitudes in a specific region where wolves initially recolonized and have been present since 2000. In particular, we investigate the relationship between information sources, trust and people's attitudes while accounting for factors like knowledge, exposure and socio-cultural determinants of respondents. We found significant differences in attitudes and knowledge about wolves as well as in the use and frequency of information sources between the two population samples. Higher knowledge, information from books and films, science-based information, and higher trust in information sources related positively with positive attitudes towards wolves. Comparatively, information from press or TV news was associated with more negative attitudes. Providing science-based information to the public and building trust in information is likely to be one measure, among others, to dampen extreme attitudes and improve people's appreciation of costs and benefits of human-carnivore coexistence. Management of conflictual situations emerging from large carnivore recolonization in Europe and beyond should consider incorporating assessments of people's use of and trust in information in addition to existing tools to pave new ways for constructive human-carnivore coexistence

    Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains

    Get PDF
    AIM: Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain. LOCATION: Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru. TIME PERIOD: From 1960–1990 to 2061–2080. TAXA: Fleshy-fruited plants and avian frugivores. METHODS: Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species. RESULTS: Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change. MAIN CONCLUSION: Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems

    Similar composition of functional roles in Andean seed-dispersal networks, despite high species and interaction turnover

    Get PDF
    The species composition of local communities varies in space, and its similarity generally decreases with increasing geographic distance between communities, a phenomenon known as distance decay of similarity. It is, however, not known how changes in local species composition affect ecological processes, that is, whether they lead to differences in the local composition of species' functional roles. We studied eight seed-dispersal networks along the South American Andes and compared them with regard to their species composition and their composition of functional roles. We tested (1) if changes in bird species composition lead to changes in the composition of bird functional roles, and (2) if the similarity in species composition and functional-role composition decreased with increasing geographic distance between the networks. We also used cluster analysis to (3) identify bird species with similar roles across all networks based on the similarity in the plants they consume, (i) considering only the species identity of the plants and (ii) considering the functional traits of the plants. Despite strong changes in species composition, the networks along the Andes showed similar composition of functional roles. (1) Changes in species composition generally did not lead to changes in the composition of functional roles. (2) Similarity in species composition, but not functional-role composition, decreased with increasing geographic distance between the networks. (3) The cluster analysis considering the functional traits of plants identified bird species with similar functional roles across all networks. The similarity in functional roles despite the high species turnover suggests that the ecological process of seed dispersal is organized similarly along the Andes, with similar functional roles fulfilled locally by different sets of species. The high species turnover, relative to functional turnover, also indicates that a large number of bird species are needed to maintain the seed-dispersal process along the Andes.Fil: Dehling, D. Matthias. University of Canterbury; Nueva ZelandaFil: Peralta, Guadalupe. University of Canterbury; Nueva ZelandaFil: Bender, Irene Maria Antoinetta. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Blendinger, Pedro Gerardo. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Böhning Gaese, Katrin. Goethe Universitat Frankfurt; AlemaniaFil: Muñoz, Marcia C.. Universidad de la Salle; ColombiaFil: Neuschulz, Eike Lena. Senckenberg Biodiversität Und Klima Forschungszentrum; AlemaniaFil: Quitián, Marta. Senckenberg Biodiversität Und Klima Forschungszentrum; AlemaniaFil: Saavedra, Francisco. Universidad Mayor de San Andrés; BoliviaFil: Santillán, Vinicio. Senckenberg Biodiversität Und Klima Forschungszentrum; AlemaniaFil: Schleuning, Matthias. Senckenberg Biodiversität Und Klima Forschungszentrum; AlemaniaFil: Stouffer, Daniel B.. University of Canterbury; Nueva Zeland

    Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains

    Get PDF
    [Aim] Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain.[Location] Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru. [Time period] From 1960–1990 to 2061–2080. [Taxa] Fleshy-fruited plants and avian frugivores. [Methods] Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species. [Results] Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change. [Main conclusion] Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems.Fieldwork at Manú was conducted under the permits 041-2010-AG-DGFFSDGEFFS, 008-2011-AG-DGFFS-DGEFFS, 01-C/C-2010SERNANP-JPNM and 01-2011-SERNANP-PNM-JEF and supported by a scholarship from the German Academic Exchange Service to D.M.D. D.M.D. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant number 787638) and the Swiss National Science Foundation (grant number 173342), both awarded to C. H. Graham. W.D.K. acknowledges a Global Ecology grant from the University of Amsterdam Faculty Research Cluster. I.D. was funded by the Alexander von Humboldt Foundation and is now supported by the Balearic Government. S.A.F. was funded by the German Research Foundation (DFG; FR 3246/2-2) and the Leibniz Competition of the Leibniz Association (P52/2017)
    corecore